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Abstract

In this paper we develop a domain decomposition method (DDM), based on the discontinuous Galerkin (DG) and the
local discontinuous Galerkin (LDG) methods, for solving multiscale problems involving macro sub-domains, where a
macro model is valid, and micro sub-domains, where the macro model is not valid and a more costly micro model must
be used. We take two examples, one from compressible gas dynamics where the micro sub-domains are around shocks,
contacts and corners of rarefaction fans, and another one from semiconductor device simulations where the micro sub-
domains are around the jumps in the doping profile. The macro model is taken as the Euler equations for the gas dynamics
problem and as a hydrodynamic model and a high field model for the semiconductor device problem. The micro model for
both problems is taken as a kinetic equation. We pay special attention to the effective coupling between the macro sub-
domains and the micro sub-domains, in which we utilize the advantage of the discontinuous Galerkin method in its com-
pactness of the computational stencil. Numerical results demonstrate the effectiveness of our DDM–DG method in solving
such multi-scale problems.
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1. Introduction

In this paper we are interested in numerical simulations of a type of multiscale problems that contain isolated
defects or singularities such as cracks, dislocations, shocks and contact lines. A common feature of such
multiscale problems is that the computational domain can be decomposed to two types of sub-domains. The
first type contains macro sub-domains, where a computationally inexpensive macro model is valid. The second
type contains micro sub-domains, where the simple macro model is not valid and a more costly micro model
must be used. In many such problems, the size of the micro sub-domains is relatively small. Typically, such
multiscale problems are solved by a domain decomposition method (DDM), see for example [1–4,
8,10,18,20–23,26,27,31–33,35,38]. The success of DDM depends on the numerical solvers used in the macro
and micro sub-domains, and more importantly on the interfacing between these two types of sub-domains.

We will apply the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods for
both the macro and the micro sub-domains. The DG method is a finite element method which uses discontin-
uous piecewise polynomials as basis functions and relies on an adequate choice of numerical fluxes, which han-
dle effectively the interactions across element boundaries, to achieve stable and accurate solutions for
nonlinear hyperbolic conservation laws. The particular version of the DG method that we use in this paper
is the Runge–Kutta discontinuous Galerkin (RKDG) method, see, e.g. [14,13,12,15,17]. For nonlinear convec-
tion diffusion equations and other partial differential equations (PDEs) involving higher order spatial deriva-
tives, we use the LDG method [16,39]. For more details of the DG and LDG methods, see for example the
review paper [17]. The DG methodology allows easy h–p adaptivity and efficient parallel implementation.
However, the main advantage of the DG method in our DDM context is the fact that the DG methods have
very compact stencils: the evolution of the numerical solution in a given cell depends only on the information
of immediate neighbors through the numerical fluxes at the element boundary, regardless of the order of accu-
racy. This advantage helps to simplify the interfacing treatment between the macro and the micro
sub-domains, for we would only need to define adequately the numerical fluxes at such interfaces to transfer
information between the two sub-domains and do not need to define any ghost point values in the neighboring
sub-domain.

As prototype examples to demonstrate the methodology, we consider only one dimensional problems in
this paper and leave multi-dimensional study to future work. We concentrate our attention on two examples,
one from compressible gas dynamics where the micro sub-domains are around shocks, contacts and corners of
rarefaction fans, and another one from semiconductor device simulations where the micro sub-domains are
around the jumps in the doping profile. In this paper we do not explore the strategy of effectively identifying
the macro and micro sub-domains and simply define them a priori based on the application problems.

The macro models are taken as the Euler equations for the gas dynamics problem and as a hydrodynamic
(HD) model and a high field (HF) model for the semiconductor device problem. The micro model for both
problems is taken as a kinetic equation. Since we emphasize the DDM methodology rather than the physics,
we choose the simple kinetic model rather than models with more complex collisions to avoid unnecessary
technical difficulty for numerical simulation. However our methodology can be easily applied to the situation
where the micro model is the Boltzmann equation with more complex collision terms (e.g. [5]) or other equa-
tions. Physically, the micro scale kinetic equation provides more information about the flow and has larger
applicability than the macroscopic counterpart. Unfortunately, when the mean free path becomes small,
the numerical solution of these equations becomes very costly, as the grid size used in the discretization must
be smaller than the mean free path. Also, kinetic problems have twice the dimension as the macro problems
and are costly to simulate in any case. The main idea of DDM is to solve the relatively inexpensive macro-
scopic model in most part of the computational domain, and only solve the micro problems in the sub-domain
where the macroscopic model is not valid.

A major emphasis of this paper is on the effective coupling between the macro and micro sub-domains, in
which we utilize the advantage of the discontinuous Galerkin method in its compactness of the computa-
tional stencil. It is usually easier to transfer information from a micro sub-domain to a macro sub-domain,
where one only needs to take moments of the distribution function from the micro sub-domain solution to
provide the necessary boundary data for the macro sub-domain. To transfer information from a macro sub-
domain to a micro sub-domain is more subtle, as one would need to choose an ansatz of the distribution
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function in order to use the limited information from the solution in the macro sub-domain to determine the
necessary boundary data for the micro sub-domain. In most of the DDM calculations, this ansatz is taken as
a Maxwellian or another known equilibrium distribution function, often obtained analytically from asymp-
totic analysis. Such an approach works well for many problems, for example for our gas dynamics test prob-
lems. This approach however does need explicitly the information of the equilibrium distribution function.
For our semi-conductor device simulation example, we propose an approach where the ansatz of the distri-
bution function at the interface is determined by the numerical solution in the micro sub-domain at the inter-
face, with its height adjusted and its velocity shifted and scaled by the information provided from the macro
sub-domain. This approach does not need the explicit information of the equilibrium distribution function,
and seems to work also for some cases when the distribution function at the interface deviates from the equi-
librium Maxwellian, see Fig. 3.2. Of course, in order for this approach to work well, the macro-scale model
at one side of the interface must be compatible with the distribution function at the other side of the
interface.

We would like to remark that the ‘‘Type A’’ problems in the heterogeneous multi-scale method (HMM)
framework [19] have many common features with DDM. The main difference between DDM style methods
and HMM style methods is that HMM style methods also try to address different time scales between the
micro and macro sub-domains. When these scales are different by magnitudes, HMM style methods solve
the fast scale micro problems only for a short fraction of the macro time step to obtain the necessary data
(e.g. fluxes) for each macro time step, thereby saving computational cost. In this paper we have not addressed
these time scale variation issues, as the examples and resolutions we have chosen yield comparable time evo-
lution scales between the micro and macro sub-domains.

The kinetic equation is solved directly in this paper. In many cases, this may not be the preferred approach
in regard to computational efficiency. Our approach, especially the coupling technique between the micro and
macro sub-domains, applies in principle also to the situation when the kinetic equation is replaced by direct
simulation Monte Carlo (DSMC). This is however not pursued in this paper.

The organization of the paper is as follows. In Section 2 we describe the DDM–DG method for the one-
dimensional gas dynamics problem, namely coupled Boltzmann and Euler equations, and provide numerical
examples. In Section 3 the DDM–DG method for the one-dimensional diode simulation problem in semicon-
ductor devices is given, with numerical examples. Concluding remarks are given in Section 4.
2. Continuum gas dynamic problems

There are two ways to describe a flow motion. The first one is based on macroscopic quantities, such as
mass, momentum and energy densities, as well as the physical law governing these quantities, such as Euler,
Navier–Stokes or higher order approximate equations supplied by the equation of state. The other description
comes from microscopic considerations, i.e. the gas kinetic theory. In this paper, we will only treat one-dimen-
sional flow as prototype examples and will only describe briefly the gas kinetic theory. For more details, see for
example [7].

The fundamental quantity in the gas kinetic description is the particle distribution function f ðx; n; t; eÞ
which gives the density of molecules in the two-dimensional physical-phase space ðx; nÞ, where ðx; tÞ is the loca-
tion of any point in space and time and n is the particle velocity. The additional variables e ¼ ðe1; . . . ; eKÞ are
the components of the internal particle velocity in K dimensions. They appear when there is internal motion
happening in molecules, such as rotation and vibration. The dimension of the internal variables is related to
the gas constant c in the following way
K ¼ 3� c
c� 1

:

The evolution equation for the gas distribution function f is the Boltzmann equation
ft þ nfx þ afn ¼ Qðf ; f Þ;

where a is the external force term acting on the particle, and Q(f, f) is the collision operator. The corresponding
relationship between the macroscopic quantities and the microscopic distribution function f is
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where q is the density, m = qv the momentum, and E the energy, satisfying the equation of state
E ¼ p
c� 1

þ 1

2
qv2;
where v is the velocity of the hydrodynamic flow, and p is the pressure of the gas. Due to the unique format of
the equilibrium distribution function M in classical statistical physics, at each point in space and time, there is
a one to one correspondence between M and the macroscopic densities, e.g. mass, momentum and energy.
This equilibrium distribution is the so-called Maxwellian,
Mðx; n; t; eÞ ¼ qðx; tÞ
ð2phðx; tÞÞ

Kþ1
2

exp �ðn� vðx; tÞÞ2 þ e2
1 þ � � � þ e2

K

2hðx; tÞ

 !
ð2:1Þ
with hðx; tÞ ¼ pðx;tÞ
qðx;tÞ being the absolute temperature.

Now, let us see how the Euler equation is derived from the Boltzmann equation. For simplicity, let us
assume that molecules have no internal motion, i.e. K = 0, and therefore c = 3. We also choose the kinetic
model as our Boltzmann equation,
ft þ nfx ¼ Qðf ; f Þ ð2:2Þ

with Qðf ; f Þ ¼ � M�f

s , and s is the average time interval between successive particle collisions for the same par-
ticle, also known as the mean free path. From the physical constraints of conservation of mass, momentum
and energy during particle collisions, the following compatibility condition has to be satisfied,
Z

waQðf ; f Þdn ¼ 0;
where wa ¼ ð1; n; 1
2
n2ÞT. Multiplying the Boltzmann equation (2.2) by wa, we obtain the macroscopic model
ut þ FðuÞx ¼ 0; ð2:3Þ

where
u ¼
q

m

E
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and
FðuÞ ¼
F 1ðuÞ
F 2ðuÞ
F 3ðuÞ
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If f is a local Maxwellian at time t, i.e. f ðx; n; tÞ ¼ Mðx; n; tÞ, we can write out the explicit form of the flux (2.5).
An easy calculation, see, e.g. [7], leads to the first component of the flux derivative as
ðF 1Þx ¼
Z

R

nMðx; n; tÞx dn ¼ ðqvÞx: ð2:6Þ
Using the equation of state and c = 3, the second component of the flux derivative can be obtained as
ðF 2Þx ¼
Z

R

n2Mðx; n; tÞx dn ¼ ðp þ qv2Þx: ð2:7Þ
The last flux term is
ðF 3Þx ¼
1

2

Z
R

n3Mðx; n; tÞx dn ¼ vðE þ pÞð Þx: ð2:8Þ
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The three flux derivative terms (2.6), (2.7) and (2.8) provide our Euler fluxes
FðuÞ ¼
qv

qv2 þ p

vðE þ pÞ

0B@
1CA:
Therefore, when the flow is in the equilibrium state, we can use the macroscopic model, such as the Euler sys-
tem, to simulate the flow. However, in a real physical situation, gas does not necessarily stay in the local ther-
modynamic equilibrium (LTE) state, such as gas inside a shock or a boundary layer. Usually, we do not know
the explicit form of the gas distribution function f in extremely dissipative flow regions, such as that inside a
strong shock wave. What we know is the time evolution of f, through the Boltzmann equation. For this case,
we can only use the microscopic model, such as the Boltzmann equation, to compute f, then use (2.4) to eval-
uate the macroscopic data that we are interested in.

2.1. Setup of the numerical scheme

We denote the x-direction computational mesh by I i ¼ ½xi�1
2
; xiþ1

2
� for i ¼ 1; . . . ;N with the center of the cell

denoted by xi ¼ 1
2
ðxi�1

2
þ xiþ1

2
Þ and the size of each cell by Dxi ¼ xiþ1

2
� xi�1

2
, with the maximum mesh size

Dx ¼ maxiDxi. We also denote Pk(I) as the space of polynomials in an interval I of degree at most k. We

can choose a basis of Pk(Ii) as, for example, f1; fi; . . . ; fk
i g, where the monomials fi ¼ x�xi

Dxi
. The n-direction mesh

is similarly denoted as J j ¼ ½nj�1
2
; njþ1

2
�, nj ¼ 1

2
ðnj�1

2
þ njþ1

2
Þ, and Dnj ¼ njþ1

2
� nj�1

2
for j ¼ 1; . . . ;N n.

We decompose the computational domain into two parts. The region where gas stays in an equilibrium state is
called the Euler region, denoted by XE(t), and the region where gas does not stay in equilibrium is called the
Boltzmann region, denoted by XB(t), see Fig. 2.1. Define CEðtÞ ¼ fi; such that cell I i 2 XE at time tg, and
CBðtÞ ¼ fi; such that cell I i 2 XB at time tg. For the case of Fig. 2.1, CEðtÞ ¼ f1; 2; . . . ; l� 1; r þ 1; r þ 2; . . . ;
Ng and CBðtÞ ¼ fl; lþ 1; . . . ; r � 1; rg. We solve the macroscale Euler system (2.3) in the Euler region and solve
the microscale Boltzmann equation (2.2) in the Boltzmann region. For both regions, we use the discontinuous
Galerkin method [13,12].

We denote qn
i ðxÞ as the polynomial of q at time tn in cell Ii, and f n

ijðx; nÞ as the polynomial of f at time tn in
cell I i

T
J j. At time tn, we have the macroscopic data qn

i ;m
n
i and En

i in the Euler region for i 2 CEðtnÞ, and the
E

I I I II l+1 r–1 r r+1l–1 lI

Ω Ω ΩE B

Boltzmann solution

Euler solution

Fig. 2.1. An example of domain decomposition.
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microscopic data f n
ij in the Boltzmann regions for i 2 CBðtnÞ and all j. If the shocks or contact discontinuities

are stationary, XE(t) and XB(t), hence CE(t) and CB(t), will not change with time t. However, when the discon-
tinuities move, CEðtnþ1Þ may be different from CEðtnÞ and CBðtnþ1Þ may be different from CBðtnÞ. If i 2 CBðtnþ1Þ
but i 2 CEðtnÞ, i.e., if cell Ii belongs to the Euler region at time tn, but now belongs to the Boltzmann region at
time tn+1, we would need to obtain microscopic data f n

ij from the macroscopic data qn
i ;m

n
i and En

i by assuming
a Maxwellian distribution
f n
ij ¼

qn
iffiffiffiffiffiffiffiffiffiffi

2phn
i

p exp �ðnj � vn
i Þ

2

2hn
i

 !
: ð2:9Þ
On the other hand, if i 2 CEðtnþ1Þ but i 2 CBðtnÞ, i.e., if cell Ii belongs to the Boltzmann region at time tn, but
now belongs to the Euler region at time tn+1, we would need to obtain the macroscopic data qn

i ;m
n
i and En

i from
the microscopic data f n

ij by taking its moments through formula (2.4).
We now describe the discontinuous Galerkin method in each region. The (k þ 1)th order accurate Pk dis-

continuous Galerkin scheme for the Euler system (2.3)–(2.5) is given by: Find unþ1ðxÞ with each of its compo-
nents in V h ¼ fh : hjIi

2 P kðI iÞ; i 2 CEðtnþ1Þg such that
Z
I i

unþ1 � un

Dt
hdx�

Z
I i

FðunÞhx dxþ bFn
iþ1

2
h�iþ1

2
� bFn

i�1
2
hþi�1

2
¼ 0
for h ¼ 1; fi; . . . ; fk
i , i 2 CEðtnþ1Þ, where, e.g. h�iþ1

2
¼ hðx�

iþ1
2
Þ. Notice that we have written out the scheme by a

first order Euler forward time discretization for simplicity of presentation. The actual computation uses a
second or third order TVD Runge–Kutta time discretization [37] which is a convex combination of two or
three Euler forward operators. The numerical flux is chosen as the kinetic flux:
bFiþ1
2
¼
Z

Rþ
Mðx�iþ1

2
; n; tÞ

n

n2

1
2
n3

0B@
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2
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n
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2
n3
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1CAdn; ð2:10Þ
where the Maxwellian M is computed by using (2.1). The numerical flux (2.10) can be evaluated (see [30] for
details) as
bFiþ1

2
¼ F�iþ1

2
þ Fþiþ1

2

for i ¼ 1; . . . ; l� 2; r þ 1; . . . ;N , with
F�iþ1
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where
AðSÞ ¼ erfcðSÞ; BðSÞ ¼ expð�S2Þ; S� ¼ v�
ffiffiffiffiffiffi
k�

p
; k ¼ 1

2h
;

and the complementary error function is defined by
erfcðxÞ ¼ 2ffiffiffi
p
p

Z 1

x
e�t2

dt:
At the macro–micro interface boundaries xl�1
2

and xrþ1
2
, we define the fluxes as
bFl�1
2
¼
Z
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Mðx�l�1

2
; n; tÞ

n
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following [3]. Notice that the kinetic flux (2.10) is particularly suitable for the transferring of information from
the micro sub-domain solution f to the macro sub-domain flux bF through upwinding via (2.11) and (2.12).
However, we have also tested the simpler Lax–Friedrichs flux and have obtained similarly satisfactory results.

In the Boltzmann regions, we define the space of polynomials in a two dimensional cell I i
T

J j of degree at
most k as
QkðI i; J jÞ ¼ w : w ¼
X

k1þk26k

ak1k2
fk1

i gk2
j

( )

with fi defined as before and gj ¼

n�nj

Dnj
. The DG scheme for the Boltzmann equation (2.2) is given by: Find

f nþ1 2 W h ¼ fw : wjI i;Jj
2 QkðI i; J jÞ; i 2 CBðtnþ1Þ; j ¼ 1; . . . ;N ng, such that
Z

I i

Z
Jj

f nþ1 � f n

Dt
hdxdn�

Z
Jj

n
Z

I i

f nhx dx
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dnþ
Z

Jj

niþ1
2

bf n
iþ1

2
hdn�

Z
Jj

ni�1
2

bf n
i�1

2
hdn

¼
Z

Ii

Z
Jj

Qðf n; f nÞhdxdn
for h ¼ fk1
i gk2

j with k1 þ k2 6 k. Notice that we have again written out the scheme by a first order Euler forward
time discretization for simplicity of presentation while the actual computation uses a second or third order
TVD Runge–Kutta time discretization, which is synchronized with the time discretization in the macro
sub-domains. The numerical fluxes are chosen as simple upwinding
bf iþ1
2
¼

f �
iþ1

2
if n P 0;

f þ
iþ1

2

if n < 0:

(

At the macro–micro interface boundary xl�1

2
, the numerical flux for n > 0 is given as
f ðxl�1
2
; n; tÞ ¼ Mðxl�1

2
; n; tÞ;
where the right hand side is the local Maxwellian corresponding to the macroscopic state at xl�1
2
. Notice that we

have assumed the ansatz of an equilibrium Maxwellian to transfer information from the macro sub-domain to the
micro sub-domain. The interface boundary condition at the micro-macro boundary xrþ1

2
can be handled similarly.

2.2. Numerical examples

We use a very accurate and essentially non-oscillatory fifth order WENO scheme [25] to compute the
kinetic equation (2.2) throughout the computational domain with a uniform refined mesh of 800 · 100 grid
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points, to obtain a reference ‘‘exact’’ solution. For all the test examples in this subsection, we compute solu-
tions to a final time t = 0.5. The theoretical domain in n is ð�1;1Þ. In our numerical experiment, we choose
the domain to be ½maxxv� L;maxxvþ L�, with L big enough such that the distribution function f is negligibly
small at the artificial n boundaries for all relevant time t. For all our test examples, L = 20 is suitable. We
divide this domain into N n ¼ 100 uniform cells and this seems to be able to provide enough resolution for
our test problems.

We have tested the following three examples:

� Stationary shock. Our first example is a stationary shock problem. The initial condition is given by:
Fig. 2.
Left: D
ðq; v; pÞ ¼
ð1:1428;�1:75; 1:5Þ if x < 0;

ð1:;�2:; 1:Þ if x P 0:

�
ð2:13Þ
Fig. 2.2 provides the density plots by using the second order accurate P1 (left) and the third order accurate P2

(right) discontinuous Galerkin methods on both the Euler and the Boltzmann regions with uniform mesh sizes
Dx ¼ 0:1; 0:05 and 0.025 for the relaxation parameter s ¼ 10�2 in the kinetic model. We divide the domain into
the micro and macro sub-domains as XB ¼ ½�0:25; 0:25�, and XE ¼ ½�0:5;�0:25� [ ½0:25; 0:5�. Fig. 2.3 con-
tains density plots for the smaller relaxation parameter s ¼ 10�3 in the kinetic model. The left picture is the
result by using the P1 DG method with uniform mesh sizes Dx ¼ 0:05; 0:025 and 0.0125, and the right picture
is the result by using P2 DG method with uniform meshes Dx ¼ 0:1; 0:05 and 0.025. In this case, we divide the
domain into the micro and macro sub-domains as XB ¼ ½�0:1; 0:1�, and XE ¼ ½�0:5;�0:1� [ ½0:1; 0:5�. In both
Figs. 2.2 and 2.3, we can clearly see that the DDM–DG numerical solutions converge to the exact reference
solution with a grid refinement. There are some oscillations in Fig. 2.3 when the mesh in the micro-domain is
not refined enough to resolve the sharp gradient, since we have not used any limiters in the calculation. How-
ever, despite these oscillations, it is still clear that the DDM–DG numerical solutions converge to the exact
reference solution with a grid refinement.
� Moving contact discontinuity. The second example is a moving contact discontinuity problem with a mov-

ing speed 0.5. The initial condition is:
ðq; v; pÞ ¼
ð1; 0:5; 0:5Þ if x < 0;

ð0:6; 0:5; 0:5Þ if x P 0:

�
ð2:14Þ
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2. Stationary shock. Density q. s = 10�2. The exact kinetic solution versus the DDM–DG solution with Dx ¼ 0:1; 0:05, and 0.025.
G P1. Right: DG P2.
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Fig. 2.3. Stationary shock. Density q. s ¼ 10�3. The exact kinetic solution versus the DDM–DG solution. Left: DG P1 with
Dx ¼ 0:05; 0:025 and 0.0125. Right: DG P2 with Dx ¼ 0:1; 0:05 and 0.025.
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Since the location of discontinuity is moving with speed 0.5, the macro and micro sub-domains must also
change with time t and we use (2.9) or (2.4) to compute the necessary data when such change happens.
Fig. 2.4 plots the density for s ¼ 10�2, by using DG P1 (left) with uniform mesh sizes Dx ¼ 0:075; 0:0375
and 0.01875 and DG P2 (right) with mesh sizes Dx ¼ 0:15; 0:075 and 0.0375. In this case, the Boltzmann region
is a moving region defined as XB ¼ ½0:5t � 0:25; 0:5t þ 0:25�. Fig. 2.5 plots the density for s ¼ 10�3 by using
DG P1 (left) with uniform mesh sizes Dx ¼ 0:0375; 0:01875 and 0.009375, and DG P2 (right) with mesh sizes
Dx ¼ 0:075; 0:0375 and 0.01875. The Boltzmann region in this case is XB ¼ ½0:5t � 0:1; 0:5t þ 0:1�. We can
clearly see that the DDM–DG numerical solutions converge to the exact reference solution with a grid
refinement.
� Sod’s shock tube problem. The last example is the Sod’s shock tube problem with the initial

condition
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Fig. 2.6. Exact Euler solution for the Sod’s shock tube problem.
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ðq; v; pÞ ¼
ðql; vl; plÞ ¼ ð1; 0; 1Þ if x < 0;

ðqr; vr; prÞ ¼ ð0:125; 0; 0:1Þ if x P 0:

�
ð2:15Þ
Notice that the solution consists of a shock, a contact discontinuity and a rarefaction wave as time goes on,
and the locations of the four interface points ðx1; x2; x3; x4Þ (see Fig. 2.6) are all initially at x = 0 and they move
with the following speeds (see [36] for the derivation)
v1 ¼ vl � cl;

v2 ¼ vl þ clh1ðx�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ce�x�pl=ðf1ðx�ÞqlÞ

p
;

v3 ¼ vl þ clh1ðx�Þ;

v4 ¼
qrvr � ezf1ðx�Þqlðvl þ clh1ðx�ÞÞ

qr � ezf1ðx�Þql
;

ð2:16Þ
respectively, where



Fig. 2.
Dx ¼ 0
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h1ðxÞ ¼
2

c�1
ð1� e�sxÞ; if x P 0;

2
ffiffi
s
p

c�1
1�e�xffiffiffiffiffiffiffiffiffiffiffi
1þbe�x
p ; if x 6 0;

8<:
f1ðxÞ ¼

e�x=c; if x P 0;
bþex

1þbex ; if x 6 0;

(

with cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cpl=ql

p
; s ¼ c�1

2c , and b ¼ cþ1
c�1

. x* in Eq. (2.16) is the solution of the following equation
h1ðxÞ þ
ffiffiffiffiffiffiffiffiffiffi
pr

pl

ql

qr

r
h1 xþ log

pr

pl

� �
� vr � vl

cl
¼ 0:
z in Eq. (2.16) is given by
z ¼ log
qrf1ðx� þ log pr

pl
Þ

qlf1ðx�Þ
:

According to the information of the exact Euler solution, we divide the region such that the micro sub-
domains are XB ¼ ½x1 � 0:2; x2 þ 0:2� [ ½x3 � 0:3; x3 þ 0:3� [ ½x4 � 0:1; x4 þ 0:1� for s ¼ 10�2, and XB ¼ ½x1�
0:05; x2 þ 0:05� [ ½x3 � 0:1; x3 þ 0:1� [ ½x4 � 0:04; x4 þ 0:04� for s ¼ 10�3, where xi ¼ vit with vi given by
(2.16). Fig. 2.7 shows the numerical results for s ¼ 10�2 with mesh sizes Dx ¼ 0:15; 0:075 and 0.0375. The left
picture in Fig. 2.7 is the result of using DG P1, and the right one is the result of using DG P2. Fig. 2.8 contains
the results for s ¼ 10�3. The left one is the result by using DG P1 with Dx ¼ 0:075; 0:0375 and 0.01875, and the
right one is the result by using DG P2 with Dx ¼ 0:15; 0:075 and 0.0375. We can clearly see that the DDM–DG
numerical solutions converge to the exact reference solution with a grid refinement.

3. Semiconductor device simulation for a semiconductor device diode

In this section, we apply the DDM–DG method to solve a GaAs diode problem in semi-conductor device
simulations. The macro models are the hydrodynamic (HD) and high field (HF) models, and the micro model
is the kinetic model. These models have been simulated and compared in [9] using a fifth order WENO scheme
[25]. A domain decomposition method coupling these models has also been attempted in [9], however the
kinetic model is used in the whole computational domain to obtain the necessary interface data for the macro
x
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7. Sod’s Shock tube problem. Density q. s ¼ 10�2. The exact kinetic solution versus the DDM–DG solution. Left: DG P1 with
:15; 0:075 and 0.0375. Right: DG P2 with Dx ¼ 0:15; 0:075 and 0.0375.
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sub-domain using the HF model. This approach can verify the applicability of the HF model in this sub-
domain, but cannot achieve a cost-reduction of utilizing the costly kinetic model only in small sub-domains.
In this paper we use a different transferring mechanism which does not require explicit information about the
ansatz of the interface distribution function. It seems that the resulting DDM–DG method works well for the
diode where the interfacing distribution function is close to the Maxwellian, and also for the same diode with a
different mobility expression and with a low potential bias where the interfacing distribution function deviates
from the Maxwellian.

We will describe the three models in the next subsection, but we point out here that the macro models
involve second derivative heat conduction terms, hence a local discontinuous Galerkin (LDG) method [16]
is used. The diode problem also involves a self-consistent Poisson equation, which is discretized by the
LDG method as well. We refer to [28,29] for more details of using DG and LDG methods for semi-conductor
device simulations. This unified discontinuous Galerkin methodology for different components in device sim-
ulation is potentially viable for efficient h-p adaptivity and parallel implementation.

3.1. Kinetic, hydrodynamic, and high field models

The following models are used in this paper.

� The kinetic model
The microscopic model is the Boltzmann equation of the following form [9]
of ðx; n; tÞ
ot

þ n
of ðx; n; tÞ

ox
� e

m
Eðx; tÞ of ðx; n; tÞ

on
¼ nðx; tÞMðnÞ � f ðx; n; tÞ

s
; ð3:1Þ
where f is the distribution function (scaled probability density function), x the spatial variable, n the velocity in
phase space, m the effective electron mass, e the electron charge unit, and
MðnÞ ¼ 1ffiffiffiffiffiffiffiffi
2ph
p e�n2=2h ð3:2Þ
is a Maxwellian, with
h ¼ kb

m
T 0; ð3:3Þ
where kb is the Boltzmann constant and T0 the lattice temperature. The concentration n(x, t) is obtained by
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nðx; tÞ ¼
Z

R

f ðx; n; tÞdn: ð3:4Þ
Also, the electric field E(x, t) is obtained by solving the coupled potential equation,
Eðx; tÞ ¼ �/x; ðe/xÞx ¼ eðn� ndÞ: ð3:5Þ

The boundary conditions are given as follows: / ¼ /0 ¼ kT 0

e lnðnd
ni
Þ at the left boundary with ni ¼ 1:4�

1010 cm�3, and / ¼ /0 þ vbias at the right boundary for potential. e is the dielectric constant, nd the doping,
vbias the voltage bias, and the relaxation parameter s is computed by s ¼ ml

e ; here l is the mobility:
lðEÞ ¼ 2l0=½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðl0jEj=vdÞ2

q
�; ð3:6Þ
� The hydrodynamic (HD) model
One of the macroscopic models we use is the hydrodynamic (HD) model [24], consisting of the conservation
of particle number n
nt þ ðnvÞx ¼ 0; ð3:7Þ

conservation of momentum p
pt þ pvþ nkbT
m

� �
x

¼ � e
m

nE � p
sp
; ð3:8Þ
and conservation of energy w
wt þ vwþ nvkbT
m

� �
x

¼ � e
m

nvE �
w� w0

m

sw
þ jnT x

m

� �
x

; ð3:9Þ
where v ¼ p
n is the velocity, T the temperature, j ¼ 3k2

b
T 0

2e the thermal conductivity coefficient governed by the
Wiedemann-Franz law, and w0 ¼ 3

2
nkbT 0 denotes the rest energy. These equations are coupled to the electro-

static equation (3.5) defining E. The expressions sp and sw are standard momentum and energy relaxation
expressions
sp ¼
mT 0l

eT
; sw ¼

3kbT 0

2eV 2
s

� lT
T 0 þ T

þ sp

2
:

� The high-field (HF) model
This model is developed in [34,11] by the asymptotic expansion methods (Chapman-Enskog) for the kinetic
formulation of the problem (3.1)–(3.5), under strong forcing scaling assumptions. The model can be written
as follows:
nt þ J x ¼ 0;
where J ¼ J hyp þ J vis, and J hyp ¼ �lnE þ slðeeÞnð�lnE þ xÞ, J vis ¼ �s½nðhþ 2l2E2Þ�x þ slEðlnEÞx. For our
current one-dimensional case, x is taken to be a constant x ¼ ðlnEÞjx¼0.

3.2. DDM–DG numerical scheme and simulation results

First we briefly describe the LDG method, using the HD model (3.7)–(3.9) and (3.5) as an example. For more
details of the DG and LDG methods, including available stability analysis and error estimates, we refer to [16,17]
and references therein. The idea of the LDG method is to rewrite PDEs containing higher order spatial deriva-
tives into a larger system containing only first order spatial derivatives. Thus the HD model can be written as
nt þ ðnvÞx ¼ 0;

pt þ ðpvþ nkbT
m Þx ¼ � e

m nE � p
sp
;

wt þ ðvwþ nvkbT
m Þx ¼ � e

m nvE � w�w0
m

sw
þ ðjn

m qÞx;
q� T x ¼ 0;

erx ¼ eðn� ndÞ;
r � /x ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ð3:10Þ



S. Chen et al. / Journal of Computational Physics 225 (2007) 1314–1330 1327
We can then formally use the same DG method for the first order PDE to solve (3.10). The numerical fluxes
are chosen as follows: the fluxes of the terms (nv), ðpvþ nkbT

m Þ and ðvwþ nvkbT
m Þ are chosen as the Lax–Friedrichs

fluxes. Fluxes for q in the third equation and T in the fourth equation are chosen as the ‘‘alternate’’ fluxes
q̂ ¼ q� and T̂ ¼ Tþ (the � and þ can also be reversed), see [16]. Notice that the auxiliary variable q can be
locally solved from the fourth equation in (3.10) and substituted into the third equation. This is the reason
the method is called the ‘‘local’’ discontinuous Galerkin method and this also distinguishes LDG from the
classical mixed finite element methods, where the auxiliary variable q must be solved from a global system.
In the fifth and sixth equations in (3.10), which describe the Poisson equation, we choose numerical fluxes
r̂ and /̂ as /̂ ¼ /�; r̂ ¼ rþ � ½/� (the � and þ can also be reversed), where [/] denotes the jump /þ � /�.
Again, the auxiliary variable r can be locally solved from the sixth equation in (3.10) and substituted into
the fifth equation, resulting in a system for / which can be solved by standard linear solvers.

We consider a one dimensional GaAs n+-n-n+ diode of length 0.8 lm. The device is described as follows:
x 2 ½0; 0:8�; the doping is defined by ndðxÞ ¼ 106=lm3 in 0 6 x 6 0:175 and in 0:625 6 x 6 0:8, and by
ndðxÞ ¼ 2� 103=lm3 in 0:225 6 x 6 0:575, with a smooth intermediate transition. For the kinetic model,
the velocity space is artificially cut at �L 6 n 6 L, where we monitor to ensure that f ðx; n; tÞ is always negli-
gibly small at the boundary n ¼ �L for the final steady state results. Through numerical experiments, we have
determined that it is more than enough in all our runs to use L = 3.5.

We divide the whole domain into non-overlapping sub-domains
XHD ¼ ½0;A� [ ½0:8� A; 0:8�; XHF ¼ ½B; 0:8� B�; XK ¼ ½A;B� [ ½0:8� B; 0:8� A�:

We apply the HD model in XHD, the HF model in XHF, and the kinetic model in XK. In these three regions,

XHD has the simplest physics and could also be resolved by a simpler drift-diffusion model, XHF contains high
electrical field and hence is suitable for the high field model, and XK contains the most complicated physics
hence the micro kinetic model is used there.

At the interfaces x = A and x ¼ 0:8� A, the boundary conditions for the HD model from the kinetic region
are given by integrating f ðx; n; tÞ with respect to n over R. For example, at x = A, the left is the HD region with
data ðn; p;wÞjx¼A� and the right is the kinetic region with data f ðAþ; n; tÞ, thus the boundary condition at x = A
for the HD model is given by
n

p

w

0B@
1CA
�������
x¼Aþ

¼
Z

R

f ðAþ; n; tÞ
1

n
3
2
n2 � 2vnþ v2

0B@
1CAdn:
The boundary condition at x = A for the kinetic region are supplied from the HD model. However, the
ansatz for the distribution function is not Maxwellian but the shape of the micro simulation at the boundary
adjusted by the macro moment data, namely
f ðA�; n; tÞ ¼ cf Aþ;
n� d

e
; t

� �
; ð3:11Þ
where the constants c, d, and e are determined by requiring
n

p

w

0B@
1CA
�������
x¼A�

¼
Z

R

f ðA�; n; tÞ
1

n
3
2
n2 � 2vnþ v2

0B@
1CAdn:
This is to say that we are keeping the general shape of the distribution function f obtained from the micro sub-
domain, and adjust its height and shift and scale it in the velocity space to match the first three moments from
the macro sub-domain. We could also require the new f to be the closest, in some given norm such as the L2

norm, to the original f in the micro sub-domain, with the constraint that its first three moments match those
from the macro sub-domain. We have adopted the approach in (3.11) because of its simplicity and good
numerical performance in our test cases.

Likewise, at the interfaces of x = B and x ¼ 0:8� B, we need to provide boundary conditions for the HF
model and the kinetic model from each other. For example, at the interface point x = B, the left region is the



1328 S. Chen et al. / Journal of Computational Physics 225 (2007) 1314–1330
kinetic model with data f ðB�; n; tÞ, and the right region is the HF model with data n(B+). The boundary con-
dition for the HF model at x = B is simply given by taking the first moment of f:
Fig. 3.
field E
nðB�Þ ¼
Z

R

f ðB�; n; tÞdn;
the boundary condition for the kinetic model is given by
f ðBþ; n; tÞ ¼ cf ðB�; n; tÞ;

i.e. by a simple adjustment of the height of f, where the constant c is determined by requiring
nðBþÞ ¼
Z

R

f ðBþ; n; tÞdn:
We perform the simulation for vbias ¼ 1:0 V, with other parameters given as m ¼ 0:065� 0:9109ð10�31 kgÞ,
e ¼ 0:1602ð10�18 CÞ, kb ¼ 0:138046� 10�4ð10�18 J=KÞ, e ¼ 13:2� 8:85418, and T 0 ¼ 300 K. The domain is
decomposed with A ¼ 0:15 and B ¼ 0:3. The constants in the mobility formula (3.6) are first taken as
l0 ¼ 0:14 lm2=ðV psÞ and vd ¼ 0:11 lm=ps.

In the numerical simulation, we perform a long time integration until a steady state is reached. We use the
piecewise linear DG and LDG schemes on a uniform grid in x with 160 points, and in n with 100 points. The
complete system is advanced with the second order total variation diminishing (TVD) Runge–Kutta method
[37] in time. Fig. 3.1 gives the plots of the concentration n and electric field E. We can clearly see that the
DDM–DG provides very good numerical results in agreement with the results obtained by using globally
the kinetic model.

The distribution function at the macro–micro interfaces for the diode with these parameters is close to a
Maxwellian, even though we have not explicitly used this information for the interface information transfer.
Next we also simulate the same diode with a different set of constants in the mobility formula (3.6) [9]:
l0 ¼ 4 lm2=ðV psÞ and vd ¼ 2 lm=ps and a lower vbias ¼ 0:01 V. We can see from the right picture in
Fig. 3.2 that the distribution function at the interface x = 0.5 deviates from a Maxwellian, yet the left picture
in Fig. 3.2 shows that the electron concentration n obtained by the DDM–DG method still agrees well with
that obtained by using globally the kinetic model. For higher vbias, the DDM–DG can proceed stably, how-
ever the result does not match well with that obtained by using globally the kinetic model. It seems that for
such cases, the distribution function at the interface is close neither to a Maxwellian nor to the asymptotic
shape required for the derivation of the high field model, hence it is not quite justified to compute with the
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high field model at the other side of the interface. A more suitable macro model seems needed for such cases.
We refer to [6] for plots of distribution functions for various devices.

4. Concluding remarks

We have developed and tested a domain decomposition method for solving multiscale problems involving
both micro kinetic models and macro hydrodynamic and high field models. The numerical method used for
both the micro and the macro problems is the discontinuous Galerkin method. Termed DDM–DG method,
this approach works effectively for our test problems in both gas dynamics flows and semiconductor device
simulation of a diode. A major advantage of our approach is the adoption of a DG and local discontinuous
Galerkin (LDG) framework for all derivative terms in the system, thereby allowing the most effective transfer
of information between the micro and the macro sub-domains through the numerical fluxes. One major find-
ings of this paper is the treatment of the information transfer from macro to micro sub-domains. Instead of
the usual approach of utilizing an ansatz such as a Maxwellian, we use the computed distribution function
from the micro sub-domain and simply adjust its height and shift and scale its velocity to match the macro
data. The numerical performance of this approach is very good, both for gas dynamics problems involving
stationary shocks and moving contacts, and for shock tube problems where a single discontinuity becomes
three different waves; and for the semi-conductor device simulations of a diode. The results of our DDM–
DG method are in good agreement with reference solutions obtained by using the micro model throughout
the computational domain. Future work will include more tests for other systems, multi-dimensions, adaptive
meshes, effective identification of the macro and micro sub-domains, and more study on the transferring of
information between the micro and macro sub-domains.
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